The Second Bounded Cohomology of an Amalgamated Free Product of Groups
نویسنده
چکیده
We study the second bounded cohomology of an amalgamated free product of groups, and an HNN extension of a group. As an application, we show that a group with infinitely many ends has infinite dimensional second bounded cohomology.
منابع مشابه
m at h . G R ] 1 6 M ay 1 99 5 The second bounded cohomology of a group with infinitely many ends ∗
We study the second bounded cohomology of an amalgamated free product of groups, and an HNN extension of a group. As an application, we have a group with infinitely many ends has infinite dimensional second bounded cohomology.
متن کاملOn bounded cohomology of amalgamated products of groups
We investigate the structure of the singular part of the second bounded cohomology group of amalgamated products of groups by constructing an analog of the initial segment of the Mayer-Vietoris exact cohomology sequence for the spaces of pseudocharacters.
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملExactness of Reduced Amalgamated Free Product C {algebras
Some completely positive maps on reduced amalgamated free products of C∗–algebras are constructed, showing that every reduced amalgamated free product of exact C∗–algebras is exact. Consequently, every amalgamated free product of exact discrete groups is exact.
متن کامل